Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Med ; 119: 103319, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422902

RESUMEN

PURPOSE: To characterise the impact of Precise Image (PI) deep learning reconstruction algorithm on image quality, compared to filtered back-projection (FBP) and iDose4 iterative reconstruction for brain computed tomography (CT) phantom images. METHODS: Catphan-600 phantom was acquired with an Incisive CT scanner using a dedicated brain protocol, at six different dose levels (volume computed tomography dose index (CTDIvol): 7/14/29/49/56/67 mGy). Images were reconstructed using FBP, levels 2/5 of iDose4, and PI algorithm (Sharper/Sharp/Standard/Smooth/Smoother). Image quality was assessed by evaluating CT numbers, image histograms, noise, image non-uniformity (NU), noise power spectrum, target transfer function, and detectability index. RESULTS: The five PI levels did not significantly affect the mean CT number. For a given CTDIvol using Sharper-to-Smoother levels, the spatial resolution for all the investigated materials and the detectability index increased while the noise magnitude decreased, slightly affecting noise texture. For a fixed PI level increasing the CTDIvol the detectability index increased, the noise magnitude decreased. From 29 mGy, NU values converged within 1 Hounsfield Unit from each other without a substantial improvement at higher CTDIvol values. CONCLUSIONS: The improved performances of intermediate PI levels in brain protocols compared to conventional algorithms seem to suggest a potential reduction of CTDIvol.


Asunto(s)
Aprendizaje Profundo , Dosis de Radiación , Tomografía Computarizada por Rayos X/métodos , Encéfalo/diagnóstico por imagen , Algoritmos , Fantasmas de Imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
2.
Phys Med ; 106: 102517, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36669326

RESUMEN

PURPOSE: To characterize the performance of the Precise Image (PI) deep learning reconstruction (DLR) algorithm for abdominal Computed Tomography (CT) imaging. METHODS: CT images of the Catphan-600 phantom (equipped with an external annulus) were acquired using an abdominal protocol at four dose levels and reconstructed using FBP, iDose4 (levels 2,5) and PI ('Soft Tissue' definition, levels 'Sharper','Sharp','Standard','Smooth','Smoother'). Image noise, image non-uniformity, noise power spectrum (NPS), target transfer function (TTF), detectability index (d'), CT numbers accuracy and image histograms were analyzed. RESULTS: The behavior of the PI algorithm depended strongly on the selected level of reconstruction. The phantom analysis suggested that the PI image noise decreased linearly by varying the level of reconstruction from Sharper to Smoother, expressing a noise reduction up to 80% with respect to FBP. Additionally, the non-uniformity decreased, the histograms became narrower, and d' values increased as PI reconstruction levels changed from Sharper to Smoother. PI had no significant impact on the average CT number of different contrast objects. The conventional FBP NPS was deeply altered only by Smooth and Smoother levels of reconstruction. Furthermore, spatial resolution was found to be dose- and contrast-dependent, but in each analyzed condition it was greater than or comparable to FBP and iDose4 TTFs. CONCLUSIONS: The PI algorithm can reduce image noise with respect to FBP and iDose4; spatial resolution, CT numbers and image uniformity are generally preserved by the algorithm but changes in NPS for the Smooth and Smoother levels need to be considered in protocols implementation.


Asunto(s)
Aprendizaje Profundo , Dosis de Radiación , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen , Algoritmos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...